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Abstract 

In the history of humankind, urbanization is one of the vibrant changing geographical 

phenomena. Almost 55% of the world’s population lives in rapidly urban and surrounding 

areas. Urban heat island represents a significant environmental problem most urban 

centres face. Extreme heat in urban areas reflects substantial risks to the growing urban 

population. The increased surface temperature is due to the thermodynamic characteristics 

of the built-up in urban. The impact of land use/land cover (LULC) dynamics is closely 

related to urban heat islands (UHI). This study aims to identify the urban heat zones by 

utilising indicators such as the LULC, NDBI, LST and NDVI for Tiruppur Corporation. The 

study area Tiruppur is known as the knitwear capital of India, attracting thousands of 

migrants from all over the country and leading to a continuous accumulation of people. So, 

most of the migrant people settled in the Tiruppur belt. The present study analysed the 

spatio-temporal land-use patterns, NDBI, LST, NDVI and UTFVI for Tiruppur Corporation 

using Landsat and sentinel data sets for 1991, 2001, 2011 and 2021. The LULC were 

prepared by utilising the supervised classification algorithm of Support Vector Machine 

(SVM). On the other hand, the advanced technique of Google Earth Engine is utilised to 

map the LST and NDVI of the study area for the same year. All the results of four 

indicators, i.e., LULC, NDBI, LST, NDVI and UTFVI, are analysed with the temporal 

changes by segmenting them with six rings of each 2km. This will help to identify the 

changes and increase of urban heat from the core to the periphery areas of the Tiruppur 

Corporation. Thus, this study aids in improving future urban planning, including 

implementing green city technologies. 

Keywords LULC, Tiruppur Corporation, LST, UHI, UTFVI. 

Introduction 

In recent decades, migration from rural to urban areas has drastically increased 

due to several factors (employment, education, economy, etc.), which has led to rapid 

urbanization and urban population growth (Kesavan et al., 2021). In 2016, the urban 

population reached 54.5% globally; if this continues, the urban population will be 60% of the 
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total world population by 2030 (U.N. 2016). This growth will convert the historical land use 

/land cover (LULC) pattern, which impacts the environmental and economic perspectives 

(Wang et al., 2018; Prakash et al., 2023). The change in LULC would cause changes not 

only in the landscape but also in the atmospheric conditions of the urban environment, such 

as the urban heat island (UHI) effect. The effect of the increased surface temperature in 

urban areas determines UHI (Weng et al. 2004). The growth of the impermeable surface 

and the decrease in the green space and water bodies are the leading causes of the 

temperature variation between urban and rural landscapes (Ranagalage et al., 2018). The 

growth of the city and its population are the indirect indicators of the UHI (Zhao et al. 2014); 

likewise, buildings, the nature of surfaces, including albedo, and heat capacity largely 

influence the UHI phenomena.  

Highly populated countries like India and China are projected to occupy 35% of the 

total world urban population by the year 2050 (Bongaarts 2020). The UHI shows severe 

effects in these rapidly urbanizing countries (Peng et al., 2021). Hence, intensive research 

on diversified urban settings is needed to address the impacts of UHI (Zhou et al. 2019). 

The impacts of UHI are assessed through remote sensing (RS), vertical sensing, fixed 

stations, mobile traverses (Brandsma and Wolters 2012), and energy balances. Among 

these techniques, remote sensing is a more advanced and feasible method to measure 

both the air and surface temperature. The traditional methods like fixed station and mobile 

traverse are expensive and time-consuming (Padmanaban et al. 2017). The combination of 

remote sensing and Geographical Information System (GIS) techniques is considered to be 

the best method for observing environmental changes (Xiao et al., 2020). However, spatial 

and temporal resolution in remote sensing are the constraints in UHI assessments.  

According to Weng et al. (2004), Land surface temperature (LST) is a fundamental 

indicator in UHI studies due to its capability to map temperature differences within urban 

areas, helping to pinpoint hotspots and assess their spatial extent. LST is the temperature 

measured on the earth's surface between land and atmosphere (Stow and Chen 2002). The 

changes in LULC play a significant role in the LST increase in the urban centres. The 

spatiotemporal changes of the LULC can be monitored using RS and GIS (Abdikan et al. 

2014). The temporal LULC changes help to understand the land use types transformation, 

and it provides information about urban planning (Gordon et al. 2009), whereas improper 

urban planning is also one of the influencers of UHI (Sarvestani et al. 2011). LULC is an 

important component in the UHI study (Díaz and Blackburn 2003) along with LST, soil 

moisture and evapotranspiration of the surface, which are the leading factors for the high 

rise in UHI (Becerril-Piña et al. 2016).  

Researchers also often utilize remote sensing-derived Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) to evaluate UHI 

effectively (Zhang et al., 2022). NDVI is useful for examining the cooling effects of urban 

green spaces. Higher NDVI values indicate more vegetation, which typically corresponds to 

lower LST values, suggesting vegetation's role in mitigating UHI. Li et al. (2011) found that  
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urban areas with higher  NDVI  values generally exhibit reduced surface temperatures, 

underscoring the importance of green infrastructure in urban planning. NDBI is specifically 

designed to highlight built-up areas by using remote sensing data, making it a more suitable 

and efficient method for identifying urban features compared to Land Use/Land Cover 

(LULC) classification methods. LULC maps, while useful, may not always provide the same 

level of precision in distinguishing between different types of urban and non-urban land 

covers. For instance, Chen et al. (2023) demonstrated that using NDBI in UTFVI studies 

allows for a more detailed and precise analysis of the relationship between built-up areas 

and temperature variations, enhancing the understanding of how urbanization impacts 

thermal environments. 

The effect of UHI can also be quantitatively computed using the Urban Thermal 

Field Variance Index (UTFVI). UTFVI provides a comprehensive view of the thermal 

conditions in urban areas by considering both temperature and vegetation cover. This index 

helps identify areas with high thermal stress, which are critical for targeting UHI mitigation 

efforts. Zhang et al. (2006) demonstrated that UTFVI could effectively assess thermal 

comfort levels in urban parks, highlighting areas needing intervention to improve urban 

living conditions. The results of UTFVI values are divided into six categories (Excellent, 

Good, Normal, Bad, Worse, Worst), and each category corresponds to a fixed Ecological 

Evaluation Index (EEI), which was used for evaluating thermal comfort (Ahmed, 2018). A 

previous study by Naim and Kafy (2021) assessed the UTFVI and defined the relationship 

between land cover and surface temperature in Chattogram City to identify the temporal 

changes of intensity of the UHI. Therefore, the combination of LST, UTFVI and NDVI is 

essential for identifying and analyzing heat patterns across urban landscapes, which are 

critical for understanding the intensity and distribution of UHI. Thus, the present case study 

for Tiruppur Corporation considered these indices in order to model the spatial distributions 

of UHI and thermal comfort. The study would help to improve future urban planning, 

including the implementation of green city technologies. 

Study area 

Tiruppur is considered to be the most urbanized developing district of Tamil Nadu 

state in recent times. Tiruppur corporation is the fifth most agglomerated urban Centre of 

Tamil Nadu based on census of India 2011. It is located at 10˚14̍ N to 77˚27̍ E and 11˚20̍ N 

and 77˚56̍ E on the banks of the Noyyal River (figure 1). It covers an area of 160 sq. km 

and is situated 450 kilometres southwest of the state capital Chennai and about 50 

kilometres east of Coimbatore. The climate of Tiruppur is tropical, with the mean maximum 

and minimum temperatures varying between 35°C and 22 °C (95 to 72 °F). The total 

population of the corporation as of the 2011 census was 8,77,778 individuals. Tiruppur has 

experienced significant fluctuations in rainfall over the years. A study by Kaviya and Elango 

(2021) indicates that the region has seen variable monsoonal patterns, with periods of 

drought alternating with years of intense rainfall. Specifically, annual rainfall has ranged 

from 400 mm in drought years to over 1200 mm during years of good rainfall.  
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These fluctuations have had substantial impacts on water resources, agricultural 

productivity, and urban water supply. Temperature trends in Tiruppur show a clear upward 

trajectory over the past few decades. According to a recent study by Gnanasekaran et al. 

(2022), there has been a marked increase in both average maximum and minimum 

temperatures. The study reports that the average maximum temperature has increased by 

1.5°C, and the average minimum temperature has increased by 1.2°C over the past 30 

years. This rise in temperature has been attributed to global warming and increased 

urbanization, which exacerbate the urban heat island effect. Over the past few decades, the 

city has transformed into a major centre for textile manufacturing and export. The study by 

Balaji and Sundararajan (2020) highlights the rapid expansion of textile units, driven by both 

domestic and international demand. 

 
Figure 1: Location map of the Study Area with corporation and ward boundaries  

Data Used and Methodology 

The present study focused on modelling the Urban Heat Island of Tiruppur 

Municipal Corporation (TMC) using the Urban Thermal Field Variance Index for the years 

1991, 2001, 2011 and 2021. The satellite images of Landsat 5 and 8 have been utilised 

from the Google  Earth  Engine Catalog -for computing   UTFVI.  Computation  of   UTFVI  
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requires Normalised Difference Vegetation Index (NDVI) and Land Surface Temperature 

(LST), as shown in Figure 2. NDVI is calculated by utilising the red and near-infrared (NIR) 

bands of Landsat data. Then, LST is calculated from the thermal bands of Landsat data 

through the mono-window algorithm (Li et al. 2022). The formulas for the calculation of LST 

and UTFVI are discussed below. The mean value of each season is considered for analysis 

and mapping. 

 
Figure 2: Methodological Framework 

The radiance of the Landsat 5 image is calculated using the following equation (1): 

Lλ = LMINλ +[(LMAXλ – LMINλ) / QCALMAX]×QCAL .............. (1) 

Where, LMINλ = spectral radiance scales to QCALMIN (1.238), LMAXλ = spectral radiance 

scales to QCALMAX (15.303), QCALMIN = the minimum quantized calibrated pixel value 

(typically 1),  QCALMAX = the maximum quantized calibrated pixel value (typically 255), 

QCAL = digital number. 

The effective at-sensor brightness temperature (BT), also known as black body 

temperature, is obtained from the spectral radiance using Plank’s inverse function (2). 

BT = K2/ ln (K1/Lλ+1) .............................................................. (2) 

Where, BT=Brightness temperature in Celsius, K1 (607.76) and K 2 = band-specific thermal 

conversion constant (Landsat 5 TM 1260.56), Lλ = Top of Atmospheric spectral radiance. 

The final Land Surface Temperature (LST) is estimated by the equation (3), 

BT = K2/ ln (K1/Lλ+1) -273.15 ................................................... (3) 
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Land Surface Temperature for Landsat 8 TIRS Sensor is calculated by conversion 

of DN values to at-sensor Radiance 

Lsensorλ = Mλ  * DN + Aλ  ..................................................................................................(4) 

where, Lsensorλ = spectral radiance (W/ (m2 * sr * μm)), Mλ = radiance multiplicative scaling 

factor for Band 10 = 0.0003342 (retrieved from Landsat 8 metadata file), Aλ = radiance 

additive scaling factor for Band 10 = 0.1 (retrieved from Landsat 8 metadata file) and DN = 

digital number.  

Brightness temperature (TB) can be computed using the pre-launched calibration 

constants ( K1 and K2) as expressed in the equation. Brightness temperature is the 

microwave radiation radiance travelling upward from the top of Earth's atmosphere. The 

calibration process has been done to convert thermal DN values of thermal bands to TB. 

Where, 𝐾1= 774.8853, 𝐾2 = 1321.0789 are retrieved from Landsat 8 metadata file. 

𝑇𝐵 =
𝐾2

𝐿𝑛(
𝐾1
𝐿𝜆

+1)
− 273.15 ................................................................ (5) 

The land surface emissivity values are obtained using equation (6). 

𝜀 = 𝑚. 𝑃𝑣 + 𝑛 .............................................................................. (6) 

where, m = 0.004 and n = 0.986. PV is the proportion of vegetation extracted using 

equations 7 and 8. 

𝑃𝑣 = [
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 ]

2

 ............................................................. (7) 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 ......................................................................... (8) 

where, NDVI is the normalized difference vegetation index. NDVI min and NDVI max are 

the minimum and maximum values of the NDVI, respectively. NDVI produces values in the 

range of -0.1 to +0.1, where vegetation areas will typically have values greater than zero, 

and the negative values indicate non-vegetative areas like urban, water, barren, ice, snow 

or clouds. 

Emissivity corrected LST 

Brightness temperatures assume that the Earth is a blackbody, which it is not, and 

this can lead to errors in surface temperature. In order to minimize these errors, emissivity 

correction is important and is done to retrieve the LST using an equation (9) 

𝐿𝑆𝑇 =  
𝑇𝐵

1 + (𝜆 ∗
𝑇𝐵

𝐶2
) ∗ 𝐿𝑛(𝜀)

⁄  .................................................... (9) 
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where LST is the Land surface temperature (in degree Celsius ˚C), TB is the Brightness 

temperature, λ =10.8 μm is the effective wavelength of Landsat 8 OLI images, e is the land 

surface emissivity, which is equal to 1.438 x 10-2 mK in which σ is the Boltzmann constant 

(1.38 x 10-23 J/K), h is the Plank’s constant (6.623 x 10-34 Js) and c is the velocity of light 

(3 x 108 m/s). 

Land Use / Land Cover (LULC) 

The LULC were prepared by utilizing the supervised classification algorithm of 

Support Vector Machine (SVM). SVM is very effective for LULC classification due to their 

high accuracy, ability to handle non-linear relationships through kernel functions, and 

robustness to overfitting. Recent research by Maxwell et al. (2023) highlights SVM's 

effectiveness in producing reliable and precise LULC maps compared to other machine-

learning algorithms. SVM's adaptability to high-dimensional data and resistance to outliers 

make it an excellent choice for remote sensing applications. In this study, the accuracy 

assessment was done through the Confusion Matrix, and the overall accuracy was above 

85% for all the years.  

Urban Thermal Field Variance Index (UTFVI) 

The UTFVI was estimated using equation (10) and subsequently was classified into 

six ecological evaluation indices (EEI) and urban heat Island phenomena, as shown in 

Table 1, which were used for evaluating the level of thermal comfort (Liu and Zhang 2011). 

𝑈𝑇𝐹𝑉𝐼 =  
𝑇𝑠− 𝑇𝑚𝑒𝑎𝑛

𝑇𝑚𝑒𝑎𝑛
 .................................................................... (10) 

where TS is the LST (˚C) and Tmean is the mean LST (˚C). 

Table 1. Threshold values of Urban Thermal Field Variance Index, Urban Heat Island 

Class and Ecological Evaluation Index 

Urban Thermal Field 
Variance Index (UTFVI) 

Urban Heat Island (UHI) Ecological Evaluation 
Index 

<0 None Excellent 

0.000 – 0.005 Weak Good 

0.005 – 0.010 Middle Normal 

0.010 – 0.015 Strong Bad 

0.015 – 0.020 Stronger Worse 

>0.020 Strongest Worst 

Results and Discussion 

The factors such as the LULC, NDVI, LST, NDBI and UTFVI are computed to 

identify the UHI of the TMC and its surroundings. All the results are segmented with six 

rings  of   each  2km in  order to  analyse the  surrounding  scenario.  The  buffer  rings   are  
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selected based on the centroid of the study area boundary. The results and discussion of 

the following factors are given below.   

Landuse Land Cover (LULC) 

The LULC for the study region has been classified based on the NRSC level 1 

classification,   which  includes  water  bodies,  built-up,  vegetation,  agricultural  land, and 

barren land for the temporal years 1991, 2001, 2011, and 2021. In 1991, the built-up of ring 

1 was about 54.31% which is a constant decrease from ring 1 to ring 6 and is about 3.59 %. 

Similarly, the water bodies also constantly decrease from ring 1(4.60%) to ring 6 (0.90%). 

Then, the vegetation class is very low in ring 1, covering only 8.73% of the area, which has 

a sudden increase of 18.82% in ring 2, and its proportion increases to 20.44% in ring 6. 

Further, the barren and agricultural land has uneven distributions of variation between rings 

1 and 6, as shown in Figure 3, in which the agricultural land shows a greater variation from 

13.47% to 56.69% between rings 1 and 6.  

In 2001, the built-up of ring 1 increased from 54.31 % to 82.62 % and in ring 6, 

3.59% to 4.27 compared with the previous decade. The number of water bodies has also 

been reduced compared with the 1991 result. The vegetation also decreased from 8.73% to 

2.37% in ring 1 and 20.44% to 11.87 % in ring 6. The barren land and agricultural land have 

a greater variation where the barren land decreased from 18.89% to 3.26 % in ring 1 and 

increased from 18.38 % to 19.41% in ring 6; in the case of agriculture, it decreased from 

13.47% to 9.65 % in ring 1 and increased from 56.69% to 63.74% in ring 6 between the 

years of 1991 and 2001.  

Compared with the year 2001, the built-up was increased in ring 1 from 82.62% to 

84.25% and in ring 6 it increased to 4.27% to 5.43% in 2011. The water bodies were also 

reduced to 0.04% in 2011 compared to previous temporal years. The vegetation decreased 

from 2.37% to 1.02% in ring 1 and 11.87 % to 8.16% in ring 6 in 2011. The barren land has 

decreased from 3.26% to 2.38% in ring 1 and 19.41% to 15.37% in ring 6. However, in 

Agriculture it has increased from 9.65% to 12.30% in ring 1 and 63.74% to 70.93% in ring 6 

in 2011.  

In 2021, the built-up has slightly increased from 84.25% to 86.23% in ring 1 and 

5.43% to 9.80% in ring 6 compared to 2011. In ring 1, water bodies are 0.04% in 2011 and 

2021; in ring 6, it has increased from 0.10% to 1.20% in 2021. The vegetation has been 

increased from 1.02% to 8.17% in ring 1 and 8.16% to 16.16% in ring 6. The barren land 

has increased from 2.38% to 3.82% in ring 1 and 15.37% to 44.67% in ring 6 in 2021. 

Agriculture has been reduced from 12.30% to 1.74% in ring 1 and ring 6, and it has reduced 

to 70.93% to 28.16% in 2021. 
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Normalized Difference Vegetation Index (NDVI) 

The values of NDVI are categorised into five classes as very low (<0.2), low (0.2 – 0.3), 

moderate (0.3 – 0.4), high (0.4 – 0.5) and very high (> 0.5) for all the four years of 1991, 

2001, 2011 and 2021 (figure 4). It is interpreted from the results that the spatial distribution 

of the NDVI class is very low in ring 1 and is gradually increasing in the consequent rings 

towards ring 6 in almost all four years of 1991, 2001, 2011 and 2021. In ring 1 of 1991, the 

mean value of NDVI is marked as 0.253, which has decreased across the years 2001, 2011 

and 2021 to 0.181, 0.176 and 0.174, respectively. Similarly, in ring 3, there was a marked 

decrease in mean values from 0.343 in 1991 to 0.207 in 2021. Further, in the 6th ring of 

1991, it was noticed as 0.389 and decreased to 0.331 (2001), 0.257 (2011) and 0.238 

(2021).  

In ring 1 of 2001, the mean value of NDVI is marked as 0.181, which decreased 

across the years of 2011 and 2021 to 0.176 and 0.174, respectively. Similarly, in ring 4, 

there was a marked increase in mean values from 0.305 in 2001 to 0.211 in 2021. The 

following 5th ring gradually decreased in the mean values of 0.251 in 2011. Additionally, in 

the 6th ring of 2001, it was noticed as 0.331 and increased to 0.257 (2011) and 0.238 

(2021). 

 

Figure 3: Spatial Distribution of Landuse and Land cover 
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In 2011, there was a decrease in NDVI values compared to 2001 across all rings, 

indicating potential changes in vegetation density over the decade. Despite this decrease, 

the general pattern of higher NDVI values in the inner rings persists, with ring 6 maintaining 

the highest value at 0.257. Similarly, in ring 1, there was also a marked increase in mean 

values from 0.176 in 2011 to 0.174 in 2021. The 3rd ring gradually decreased in the mean 

values of 0.217 in 2011. Further, in the 6th ring of 2011, it was noticed as 0.257 and 

decreased to 0.238 (2021). By 2021, NDVI values will continue to decline compared to 

1991, 2001, and 2011. This decline suggests potential environmental changes affecting 

vegetation health. However, the inner rings consistently show lower NDVI values compared 

to the outer rings across all years. Ring 6 maintains the highest NDVI value in 2021, with 

lower values in previous years, such as ring 1 performing the lowest value in 2021 (0.174). 

In this study area, NDVI values significantly changed from 2011 to 2021, and the main 

reason for the growth of urbanization and increasing human activities. 

 
Figure 4: Spatial Distribution of Normalized Difference Vegetation Index 
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Land Surface Temperature (LST) 

In 1991, the Land Surface Temperature (LST) values across all rings remained 

relatively stable over the decade, with minor anomalies observed. Rings 1 to 3 showed LST 

values ranging from 39.08 to 40.22, indicating a consistent temperature increase. Rings 4 

to 6 also exhibited stable LST values, with temperatures ranging from 40.20 to 40.37 (figure 

5).  

By 2001, the LST values remained largely consistent compared to 1991, with 

minimal changes observed across all rings. Rings 1 to 4 maintained LST values of 40.22 to 

40.27, indicating stable temperature patterns similar to the previous decade. Similarly, 

Rings 5 and 6 exhibited minor changes in LST values, ranging from 40.20 to 40.37. Here, in 

the year 2001, the outer region exhibited high LST values due to the distribution of a high 

amount of barren land without vegetation, which exhibits a larger amount of surface 

temperature than the core built-up areas.   

In 2011, there was a noticeable increase in LST values across all rings compared 

to previous years. Rings 1 to 3 experienced a significant temperature rise, with LST values 

ranging from 45.91 to 43.33, indicating warmer conditions. Similarly, Rings 4 to 6 showed 

LST values ranging from 40.58 to 40.34. As a result, increasing temperatures across the 

study area in 2011 are potentially indicative of environmental changes or urban growth 

effects. By 2021, there was a slight decrease in LST values compared to 2011, although 

temperatures remained relatively high across all rings. Rings 2 to 4 exhibited LST values 

ranging from 42.19 to 41.21, indicating warm conditions. Similarly, Rings 5 to 6 maintained 

temperatures ranging from 39.68 to 40.31. Despite the slight decrease, the data suggests 

continued warmth across the study area in 2021, showing the processes of urbanization 

and some ongoing factors influence the surface temperature. 

Normalized Difference Built-up Index (NDBI) 

The purpose of the Normalized Difference Built-up Index (NDBI) in this study is to 

identify the Urban Thermal Field Variance Index (UTFVI) accurately to quantify and map 

urban built-up areas, which are critical in understanding the urban heat island (UHI) effect. 

The NDBI is calculated for the study region across the years of 1991, 2001, 2011 and 2021. 

These results are compared with Google Earth, and the threshold value for the built-up 

regions is identified as 0.36, by which the NDBI values are classified into two classes: built-

up and non–built-up class. The results clearly illustrate the spatial distribution and 

development of built-up across the rings in each year and also the development across the 

temporal years (figure 6).  

In 1991, the intensity of built-up was only marked in ring 1 and ring 2, whereas in 

other rings the distribution of built-up was very dispersed and scattered. However, during 

the year 2001, the concentration of built-up extended towards ring 3 and also the intensity 

in rings 1  and 2  increased  when compared to the previous decade. The condition in 2011  
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is   almost   similar   to   that   of   the   distribution  in  2001, since the extension of built-up 

concentration is absent in the fourth ring; instead, the intensity of built-up is increased in the 

rings 1, 2, and 3. Further, in 2021, a larger increase of built-up was noticed in all the rings, 

and the intensity of the built-up was extended to ring 4 of the study region. In addition, it is 

noticed that the intensity of built-up has attained its maximum extent in the rings 1 and 2.  

 
Figure 5: Spatial Distribution of Land Surface Temperature 

Urban Thermal Field Variance Index (UTFVI) 

The urban thermal field variance index is basically a conceptual factor based on 

surface temperature,  which also defines urban heat islands.  The Urban thermal field is  
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classified into six classes based on the Urban Heat Island aspect such as none (<0), weak 

(0.000 -0.005), middle (0.005-0.010), strong (0.010-0.015), stronger (0.015-0.020), 

strongest (>0.020) for 1991, 2001, 2011, and 2021. As per the results of UTFVI, the 

temperature gradually increases from 1991 to 2021 (figure 7).  

 
Figure 6: Spatial Distribution of Normalized Difference Built-up Index 

In 1991, the structural distribution of thermal variance was relatively low compared 

to the respective years. In ring 1 there is only a distribution of strong and stronger classes 

where it is changed to a high distribution of stronger and a low distribution of strong classes  
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in the same ring during the year 2001. This condition is even more different in 2011, when 

some of the stronger UHI conditions are changed to the strongest UHI conditions. Thus, in 

the year 2021, most of the parts of ring 1 fall under the strongest UHI condition. This is the 

similar condition in the ring 2 as well in all the observed years. However, in ring 3, during 

1991, there is a maximum distribution of strong UHI conditions along with the distribution of 

none, weak and middle class. However, this distribution has tremendously changed across 

the years 2001, 2011 and 2021 as the none-to-middle UHI class is reduced, and most of 

the portions of ring 3 are increased with the strong to strongest class condition. Moreover, 

as mentioned in the LST, here in the year 2001, the UTFVI value is higher in the outer ring 

than in the core rings due to the abundant distribution of barren land in the outer rings. It is 

noticed from the result of UTFVI that the Tiruppur Municipal Corporation is highly affected 

by the heat stress that is from ring 1 to ring 4 of 2021 is falls under the stronger and 

strongest UHI class. In addition, the northwest portion of the study region is also affected by 

the strong to strongest UHI condition in all four years.   

 
Figure 7: Spatial Distribution of Urban Thermal Field Variance Index 
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Identifying the trend of UHI is very helpful in designing appropriate adaptation 

methods for sustainable urban growth. A previous study by Moisa et al. (2022) found that 

the urban thermal environment is highly influenced by changes in LULC. In this present 

study, the temporal changes of the LULC along with the LST, NDVI, NDBI, and UTFVI were 

identified to determine the influence of urbanization on UHI phenomena in the study area. A 

similar study by Moisa and Gemeda (2022) assesses the urban thermal field variance index 

and thermal comfort level of Addis Ababa metropolitan city, Ethiopia. Their study 

categorised them into six zones to identify the UHI. 

 
Figure 8: Graphical Representation of land use / Land cover, NDVI, NDBI and UTFVI 
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In the present study, during 1991, the structural distribution of thermal variance was 

relatively low compared to the recent years. In ring 1, there is only a distribution of strong 

classes, which changed to stronger classes in the year 2001. This condition became even 

more intense in 2011, when some of the stronger UHI conditions were changed to the 

strongest UHI conditions. Thus, in the year 2021, most of the parts of ring 1 fall under the 

strongest UHI condition. This condition is supported by the other factors where the NDVI 

values are very low, indicating very low vegetation; the LST values are high, indicating very 

high temperature; and the NDBI values are also very high, indicating high intensity of built-

up distribution. The result of LULC also supports the UTFVI result with the higher 

distribution of built-up in the same ring. Accordingly, the strong to strongest classes are 

increasing exponentially during these years (1991 to 2021) and are mostly concentrated 

over the core in the central rings 1 and 2 and also in the northwestern portions of the study 

region (rings 4, 5, 6) during the year 2011 and 2021. However, it is observed that during the 

years 1991 and 2001, the core areas exhibited less LST and UTFVI than the outer rings, 

which have a high distribution of barren land without vegetation, which poses a higher 

surface temperature than the built-up (figure 8). This condition is also supported by the 

higher decrease of vegetation (NDVI), increase of temperature (LST) and the increase of 

built-up (NDBI and LULC). By identifying the areas most affected by UHI, this research 

provides a clear spatial understanding of heat distribution within the city. The findings can 

be leveraged to prioritize cooling measures in the most vulnerable neighbourhoods. 

Incorporating more green spaces and implementing green roofing and cool roofing 

technologies can foster a more resilient urban environment in Tiruppur city. 

Conclusion 

The present study aims to identify the impact of urbanization on the increasing 

temperature and development of urban heat islands in Tiruppur city. The urban expansion 

and distribution are inferred by analysing the LULC, NDVI, and NDBI changes from 1991 to 

2021 at a decade interval. These spatio-temporal changes were compared with 

temperature analysis by computing LST and UTFVI. The result infers that the strong to 

strongest classes are increasing exponentially from 1991 to 2021 and are mainly 

concentrated over the city core, such as rings 1 and 2, and in the northwestern portions of 

the study region, in rings 4, 5 and 6. This inference is supported by the decrease of 

vegetation (NDVI), increase of temperature (LST) and the increase of built-up (NDBI and 

LULC). Thus, in the near future, this urban heat island will increase enormously to the outer 

rings and affect all the life forms. The findings of this study offer crucial insights that can 

significantly aid governance in devising effective strategies to combat urban heat and 

improve the overall quality of life for residents in TMC. Policymakers can use these insights 

to enforce stricter regulations on building materials and urban designs that contribute to 

heat retention, ensuring that resources are allocated efficiently and effectively.  
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